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Short Papers

Investigation of Periodic Structures in a Fln

Line: A Space-Spectral Domain Approach

N. Gupta and M. Singh

Abstract— The space-spectrat domain approach (SSDA) is
for the analysis of the unilateral fin line with periodically

utilized
varying

slot patterns._ ‘Evo new type of structures in a unilateral fin- tine with
sismsoidally and triangularly varying slot patterns are investigated using
this approach.

I. INTRODUCTION

Applications of periodic structures in slow wave devices and in

filters are well known [1]–[3], In microwave integrated circuits, these

structures are usually formed by etching a periodic metallization on

the circuit substrate. Generally, infinite periods are assumed in these

structures and then Floquet’s theorem is used to focus the problem

into a single period. The spectral domain approach (SDA)[4] and

the method of lines (MOL) [5], [6] have been used in the past to

analyze various types of periodic structures in microstrip, fin line

configurations, involving either 2-D expansion of basis functions for

the SDA or 2-D discretization for the MOL. The SSDA [7], a novel

combination of two methods, involves 1-D SDA in x-direction and

1-D MOL in the z-direction. This combination takes the advantage

of the flexibility of the MOL in dealing with the arbitrarily shaped

discontinuities and at the same time it utilizes the computational

efficiency of the SDA.

In [8], the SSDA has been utilized to compute the resonant

characteristics of the bilateral fin line resonators. The complexity

arising due to the direct implementation of the matrices of large order

has been minimized at the cost of some analytical preprocessing. This

reduces the computation time, and at the same time, it also increases

the efficiency of the existing algorithm significantly.

In the present paper, the above approach is extended to analyze

a class of unilateral fin lines with slot pattern changing periodically

in different fashion. In such cases, due to structural periodicity in

the z-dimension, the periodic boundary conditions are required to

be incorporated. The present analysis is simple and can be easily

implemented on periodic slot pattern of various shapes, as long as

the circuit contours can be described by a set of coordinates. The

analysis establishes the functional behavior of the periodic fin line

with respect to the propagation constant, depicting the passband and

stopband phenomenon for the structures under consideration.

II. THEORY

The discretization of resonators, periodic structures, and disconti-

nuities exhibits a number of common features. However, the stmc-

tnres differ in the boundary conditions and hence their difference

matrices and the transformation matrices are different.

The structure considered is a unilateral fin line as shown in

Fig. l(a). For the periodic structures, the potential functions and all
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Fig. 1. (a) Cross-sectional view of unilateral fin line. (b) Sinusoidal slot

variation. (c) Triangular slot variation.

electromagnetic field components must satisfy Floquet’s theorem, as

sJe’h(.z,~,z +p) = e-’pprje’h(z, y, z) (1)

where /3 is the propagation constant in the z-direction and p is the

periodic length.

One period of the structure is discretized with @’ lines located at

z = kh., and s)h lines at z = (k+0.5)h= (k = 1,..., N), where h.

is the discretization interval. The finite difference expression for the

first derivative of V’ with respect to z is then given by

(2)

with

–1 1

I I“.’.

[Dz]= “ .,” (3)
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The difference operator for @h and its derivative is – [D=] *~, which

yields for the second-order derivative of @e. Therefore

~z 82$’
.= + –[@’][Dz]t[Dz]*= [qJe][D;z]*. (4)
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The original form of the partial Helmholtz equation, after application

of the SDA in x-direction and the MOL in z-direction reduces to

The matrix [D,,] is a Hermitian matrix and is to be transformed into

a diagonal matrix of eigenvalues [6] using unitary transformation

matrices of eigenvectors. For periodic boundaty conditions, the

eigenvahtes and eigenvectors matrices are derived as in [9].

The uncoupled

domain are

where

and

differential equations obtained in the transformed

($-’’”)~“(c%, y) = o (6)

(7)

(8)

The solution of (6) describes the wave propagation in Y direction and

establishes a relationship between continuity conditions at the two

boundaries of the dielectric interface.

The space-spectral coupled admittance matrix which is obtained

by application of the continuity condition in the plane where the slot

pattern is situated and introducing the boundary conditions at the

metallic covers at y = O and y = hl + hZ + d is

w::!]=[-[G,, (an, /$0, ‘q] [G12(an, ko, /3)] :.(%) . (9)
1[ 1[Gz, (a~, k,, /?)] [Gz,(cvn , k,, /?)] :z(m)

A reverse transformation is then carried out for both MOL and SDA

independently since the final boundary conditions cannot be applied

in the transformed domain. For the MOL, the back transformation

is done with the help of the orthogonal transformation matrices,

and for the SDA it is done by applying the Galerkin’s technique.

In the case of resonators, the Galerkin’s technique is applied after

obtaining the reduced matrix by considering few discretization lines

passing through the resonator portion, while in the case of periodic

structures with continuous slot patterns, the operations are performed

considering all the lines within a period.

After reverse transformation, the final boundary conditions lead to

the Hermitian matrix, which is then solved for zero of the determinant.

In order to achieve a fast algorithm for the periodic slotting

centered in the E-plane, 1-D sinusoidal basis functions modified by an

edge-condition term [8] are generally employed. For a periodically

varying slot width, the parameter w and s, as in Fig l(a), are the

function of z. Hence, they are different for each electric and magnetic

lines and can be easily described by a set of coordinates for w and

S both.

III. ~SULTS

The convergence behavior of the numerical method has been

discussed for the example of a periodically nonuniform unilateral

tin line with slot width changing in sinusoidal and triangular fashion.

The substrate material used is Duroid (e? = 2.22) with a thickness,

d = 0.127 mm. The geometrical dimensions of the slot structure

are as shown in Fig. 1(b) and (c), with periodicity (length of one

period) of the line p = 3.048 mm. The metallization thickness is

assumed to be zero. The periodically varying width of the slot for

the sinusoidal and triangular variation is defined by the two periodic

functions W(z) (left side) and W.(z) (right side) as a function of the
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Fig. 2. Dispersion characteristic for sinusoidal slot variation.

z-coordinate. The width of the slot at the coordinate z is therefore.. . . .
w(z) = Wi(z) – w.(z).

The stability of the calculated normalized /3 in relation to the

different frequencies, i.e., the dispersion characteristics in the kO – @

plane, commonly known as the Brillouin diagram, has been taken

as a criteria for the convergence of the numerical method. It mainly

depends on the number of discretization lines within a period, the

chosen number of expansion functions, as well as on the number of

spectral terms. Additionally, the computation results are influenced

by the accuracy with which the expansion functions are described

in the spectral domain. Our experience says that the sinusoidal basis

functions modified by an edge condition term can be employed for

most of the slot geometry. Furthermore, the computations show that

the convergence is also frequency dependent. In view of the required

accuracy in the practical applications, the discretization interval is

chosen to be at least one-sixth of the guiding wavelength [11].

The validity of the present analysis is first checked for the uniform

slot pattern case. Next, an attempt is made to study periodic structures

in a fin line for which no previous data was available, like sinusoidally

and triangularly varying slot patterns. Fig. 2 shows the dispersion

characteristics for the sinusoidal slot variation case with 300 spectral

terms, 15 number of lines in a period and total five number of

basis functions (em = 3, e, = 2), for the four sets of data for the

modulation index as m = 0.2, 0.333, 0.5, 0.7. The stopband changes

with the modulation index. As the modulation index is increased, the

stopband also increases, For larger values of modulation index, such

as m = 0.7, total five number of basis functions are not sufficient to

reach convergence; hence, more than five number of basis functions

have to be taken into consideration. It is also observed that the

convergence is better in the higher-frequency region than in the

lower-frequency region. The improvement of the convergence with

increasing frequency can be explained easily. For the lower-frequency

region, one wavelength is equal to several periodic lengths p of the

line, while in the higher-frequency range, the periodic length is equal

to or smaller than the wavelength of the wave on the line. This

means that the error per wavelength is larger for low frequencies and

smatler for high frequencies.

Fig. 3 shows the dispersion characteristics for the sinusoidally

varying slot pattern when W~ and Wd, both change for each set

of parameters.

Fig. 4 shows a comparison in the dispersion characteristics for the

sinusoidally and triangularly varying slot patterns. The stopband for

the triangularly varying slot pattern is marginally narrower than the
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Fig. 3.
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Dispersion characteristic for sinusoidal slot variation.
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Dispersion characteristics for sinusoidal and triangular slot variation.

stopband of the sinusoidally varying slot pattern. This may be due

to broader apex of the sinusoidal slot in comparison to sharper apex

of the triangular slot.

IV. CONCLUSION

The SSDA has been extended for computing the dispersion chw-

acteristics of some periodic structures in the k. – ~ plane. With the

incorporation of the periodic boundary conditions, the present method

is very well suited to analyze various possible periodic structures in

rnicrostrip, fin lines, and co-planar waveguides, which were difficult

to analyze before. The interesting feature of the method is that the

same set of the sinusoidal basis functions can be utilized for most of

slot geometry. This method can also be utilized to study other types

of periodic structures, like meander lines and so on.
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support short-range electromagnetic spatial sotitons with a complex
propagation constant. A theoretical model hased on the Ginzhurg-Landau
theory is used. Analytical results for the complex solitons predict unique

features that cannot be found in conventional solitons in normal (superc-
onductive) med]a.

I. INTRODUCTION

Soliton and solitary-wave propagation in material media such as

dielectrics, semiconductors, plasmas, and magnetized materials have

long been of extensive interest in a rich variety of branches that

include both pure and applied sciences [1]. For solitary light beams

(spatial solitons) that are describable with a family of nonlinear

Schrodinger equations, a picture that explains solitons in terms of the

fundamental modes of the linear waveguide they induce was found

to be consistent with our physical intuition [2], [3]. As is well known

in classical waveguide theory, guided modes in a linear waveguide

can be classified into three types: bound (oscillatory), evanescent

(diffusive), and complex modes, which can be characterized by a real,

a purely imaginary, and a complex propagation constant, respectively.

Manuscript received July 11, 1994; revised August 29, 1995. Thk work
was supported in part by a Scientific Research Grant-in-Aid from the Japanese
Ministry of Education, Science, and Culture.

The authors are with the Department of Electromc and Information Engi-
neering, Hokkaido University, Sapporo 060 Japan.

IEEE Log Number 9415553.

0018-9480/95$04.00 @ 1995 IEEE


