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Short Papers

Investigation of Periodic Structures in a Fin
Line: A Space-Spectral Domain Approach

N. Gupta and M. Singh

Abstract— The space-spectral domain approach (SSDA) is utilized
for the analysis of the unilateral fin line with periodically varying
slot patterns. Two new type of structures in a unilateral fin line with
sinusoidally and triangularly varying slot patterns are investigated using
this approach.

1. INTRODUCTION

Applications of periodic structures in slow wave devices and in
filters are well known [1]-[3]. In microwave integrated circuits, these
structures are usually formed by etching a periodic metallization on
the circuit substrate. Generally, infinite periods are assumed in these
structures and then Floquet’s theorem is used to focus the problem
into a single period. The spectral domain approach (SDA){4] and
the method of lines (MOL) [5], [6] have been used in the past to
analyze various types of periodic structures in microstrip, fin line
configurations, involving either 2-D expansion of basis functions for
the SDA or 2-D discretization for the MOL. The SSDA [7], a novel
combination of two methods, involves 1-D SDA in x-direction and
1-D MOL in the z-direction. This combination takes the advantage
of the flexibility of the MOL in dealing with the arbitrarily shaped
discontinuities and at the same time it utilizes the computational
efficiency of the SDA.

In [8], the SSDA has been utilized to compute the resonant
characteristics of the bilateral fin line resonators. The complexity
arising due to the direct implementation of the matrices of large order
has been minimized at the cost of some analytical preprocessing. This
reduces the computation time, and at the same time, it also increases
the efficiency of the existing algorithm significantly.

In the present paper, the above approach is extended to analyze
a class of unilateral fin lines with slot pattern changing periodically
in different fashion. In such cases, due to structural periodicity in
the z-dimension, the periodic boundary conditions are required to
be incorporated. The present analysis is simple and can be easily
implemented on periodic slot pattern of various shapes, as long as
the circuit contours can be described by a set of coordinates. The
analysis establishes the functional behavior of the periodic fin line
with respect to the propagation constant, depicting the passband and
stopband phenomenon for the structures under consideration.

II. THEORY

The discretization of resonators, periodic structures, and disconti-
nuities exhibits a number of common features. However, the struc-
tures differ in the boundary conditions and hence their difference
matrices and the transformation matrices are different.

The structure considered is a unilateral fin line as shown in
Fig. 1(a). For the periodic structures, the potential functions and all
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Fig. 1. (a) Cross-sectional view of unilateral fin line. (b) Sinusoidal slot
variation. (c) Triangular slot variation.

electromagnetic field components must satisfy Floquet’s theorem, as
V(2,92 +p) = Y (a,y, 2) ¥

where 3 is the propagation constant in the z-direction and p is the
periodic length.

One period of the structure is discretized with 1° lines located at
2 = kh., and ¢" lines at = = (k+0.5)h, (k= 1,..., N), where b,
is the discretization interval. The finite difference expression for the
first derivative of 1* with respect to z is then given by
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The difference operator for 1" and its derivative is —[D,]*t, which
yields for the second-order derivative of +°. Therefore
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The original form of the partial Helmholtz equation, after application
of the SDA in x-direction and the MOL in z-direction reduces to
d2 d)e,h ( [ De,h
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The matrix [D,,] is a Hermitian matrix and is to be transformed into
a diagonal matrix of eigenvalues [§] using unitary transformation
matrices of eigenvectors. For periodic boundary conditions, the
eigenvalues and eigenvectors matrices are derived as in [9].

The uncoupled differential equations obtained in the transformed
domain are

d2 e,h \ Te.h
W“%’ ¢, (om,y) =0 (6)
where
oh _ (7 o 2\?
Ve = ﬁ + [ kz (7)
and
gf,h — [Te,h]/wze,h . (8)

The solution of (6) describes the wave propagation in y direction and
establishes a relationship between continuity conditions at the two
boundaries of the dielectric interface.

The space-spectral coupled admittance matrix which is obtained
by application of the continuity condition in the plane where the slot
pattern is situated and introducing the boundary conditions at the
metallic covers at y = 0 and y = h1 +ha +d is
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A reverse transformation is then carried out for both MOL and SDA
independently since the final boundary conditions cannot be applied
in the transformed domain. For the MOL, the back transformation
is done with the help of the orthogonal transformation matrices,
and for the SDA it is done by applying the Galerkin’s technique.
In the case of resonators, the Galerkin’s technique is applied after
obtaining the reduced matrix by considering few discretization lines
passing through the resonator portion, while in the case of periodic
structures with continuous slot patterns, the operations are performed
considering all the lines within a period.

After reverse transformation, the final boundary conditions lead to
the Hermitian matrix, which is then solved for zero of the determinant.

In order to achieve a fast algorithm for the periodic slotting
centered in the E-plane, 1-D sinusoidal basis functions modified by an
edge-condition term [8] are generally employed. For a periodically
varying slot width, the parameter w and s, as in Fig 1(a), are the
function of z. Hence, they are different for each electric and magnetic
lines and can be easily described by a set of coordinates for w and
s both.

]. )]

III. RESULTS

The convergence behavior of the numerical method has been
discussed for the example of a periodically nonuniform unilateral
fin line with slot width changing in sinusoidal and triangular fashion.
The substrate material used is Duroid (e, = 2.22) with a thickness,
d = 0.127 mm. The geometrical dimensions of the slot structure
are as shown in Fig. 1(b) and (c), with periodicity (length of one
period) of the line p = 3.048 mm. The metallization thickness is
assumed to be zero. The periodically varying width of the slot for
the sinusoidal and triangular variation is defined by the two periodic
functions W;(z) (left side) and W, () (right side) as a function of the
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Fig. 2. Dispersion characteristic for sinusoidal slot variation.

z-coordinate. The width of the slot at the coordinate z is therefore
W(z) = Wi(z) — W,(z).

The stability of the calculated normalized 3 in relation to the
different frequencies, i.e., the dispersion characteristics in the ko — 3
plane, commonly known as the Brillouin diagram, has been taken
as a criteria for the convergence of the numerical method. It mainly
depends on the number of discretization lines within a period, the
chosen number of expansion functions, as well as on the number of
spectral terms. Additionally, the computation results are influenced
by the accuracy with which the expansion functions are described
in the spectral domain. Our experience says that the sinusoidal basis
functions modified by an edge condition term can be employed for
most of the slot geometry. Furthermore, the computations show that
the convergence is also frequency dependent. In view of the required
accuracy in the practical applications, the discretization interval is
chosen to be at least one-sixth of the guiding wavelength [11].

The validity of the present analysis is first checked for the uniform
slot pattern case. Next, an attempt is made to study periodic structures
in a fin line for which no previous data was available, like sinusoidally
and triangularly varying slot patterns. Fig. 2 shows the dispersion
characteristics for the sinusoidal slot variation case with 300 spectral
terms, 15 number of lines in a period and total five number of
basis functions (e, = 3,e. = 2), for the four sets of data for the
modulation index as m = 0.2, 0.333, 0.5, 0.7. The stopband changes
with the modulation index. As the modulation index is increased, the
stopband also increases. For larger values of modulation index, such
as m = 0.7, total five number of basis functions are not sufficient to
reach convergence; hence, more than five number of basis functions
have to be taken into consideration. It is also observed that the
convergence is better in the higher-frequency region than in the
lower-frequency region. The improvement of the convergence with
increasing frequency can be explained easily. For the lower-frequency
region, one wavelength is equal to several periodic lengths p of the
line, while in the higher-frequency range, the periodic length is equal
to or smaller than the wavelength of the wave on the line. This
means that the error per wavelength is larger for low frequencies and
smaller for high frequencies.

Fig. 3 shows the dispersion characteristics for the sinusoidally
varying slot pattern when W,, and Wy, both change for each set
of parameters.

Fig. 4 shows a comparison in the dispersion characteristics for the
sinusoidally and triangularly varying slot patterns. The stopband for
the triangularly varying slot pattern is marginally narrower than the
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Fig. 3. Dispersion characteristic for sinusoidal slot variation.
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Fig. 4. Dispersion characteristics for sinusoidal and triangular slot variation.

stopband of the sinusoidally varying slot pattern. This may be due
to broader apex of the sinusoidal slot in comparison to sharper apex
of the triangular slot.

IV. CONCLUSION

The SSDA has been extended for computing the dispersion char-
acteristics of some periodic structures in the kg — § plane. With the
incorporation of the periodic boundary conditions, the present method
is very well suited to analyze various possible periodic structures in
microstrip, fin lines, and co-planar waveguides, which were difficult
to analyze before. The interesting feature of the method is that the
same set of the sinusoidal basis functions can be utilized for most of
slot geometry. This method can also be utilized to study other types
of periodic structures, like meander lines and so on.
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Complex Solitons in a Superconductive Medium

K. Hayata and M. Koshiba

Abstract—We show analytically that a type-II superconductor may
support short-range electromagnetic spatial solitons with a complex
propagation constant. A theoretical model based on the Ginzburg-Landau
theory is used. Analytical results for the complex solitons predict unique
features that cannot be found in conventional solitons in normal (asuper-
conductive) media.

1. INTRODUCTION

Soliton and solitary-wave propagation in material media such as
dielectrics, semiconductors, plasmas, and magnetized materials have
long been of extensive interest in a rich variety of branches that
include both pure and applied sciences [1]. For solitary light beams
(spatial solitons) that are describable with a family of nonlinear
Schrodinger equations, a picture that explains solitons in terms of the
fundamental modes of the linear waveguide they induce was found
to be consistent with our physical intuition [2], [3]. As is well known
in classical waveguide theory, guided modes in a linear waveguide
can be classified into three types: bound (oscillatory), evanescent
(diffusive), and complex modes, which can be characterized by a real,
a purely imaginary, and a complex propagation constant, respectively.
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